EVAPORATION OF THE REFRIGERANT WATER

Previous and current research at Fraunhofer ISE

Lena Schnabel, Rahel Volmer

Fraunhofer Institute for Solar Energy Systems ISE

25th IIR International Congress of Refrigeration Montreal, August 24-30, 2019

www.ise.fraunhofer.de

Background & Motivation

Evaporation of Water in Adsorption Heat Pumps / Chillers

- Typical conditions:
 - Refrigerant: water (pure refrigerant environment)
 - Evaporation at subatmospheric pressure: 4-20°C / 8-25 mbar → unusual evaporation conditions
 - Low driving temperature differences
- Challenging conditions for effective evaporation
- Specific requirements for the evaporator:
 - High evaporation efficiency despite difficult conditions
 - Suitability for large vapor volumes
 - Vacuum tightness + corrosion stability
 - Compact & low-cost design

Operational Modes State of the Art

Operational Modes State of the Art

How can evaporator performance be improved?

Operational Modes State of the Art

Operational Modes

Innovative approaches

6 © Fraunhofer ISE FHG-SK: ISE-INTERNAL

[2] https://chemdemos.uoregon.edu/sites/chemdemos1.uoregon.edu/files/PhaseDiagramWater.jpg

Facilitated nucleate boiling with porous structures Approach

- Shift the regime of nucleate boiling to lower wall superheats
- Utilization of structured / porous surfaces
 - facilitated bubble formation due to more \geq available nucleation sites
 - higher heat transfer coefficient

Facilitated nucleate boiling with porous structures

Example: Dissertation Kai Witte/ SorCool-Projekt (FKZ 0327423B)

"Experimental Investigations on Boiling in Metal Fiber Structures at Low Pressures"

- Samples: Sintered copper fiber structures
- Determination of boiling curves and required wall superheats (△T) for nucleate boiling

Required superheat can be substantially decreased, but remains relatively high

8 © Fraunhofer ISE FHG-SK: ISE-INTERNAL

Facilitated nucleate boiling with porous structures Example: Project "HArVest" (2015-2018)

- Composite material: Aluminum foam with surface-embedded expanded glass granules
- Idea: expanded glass granules act as nucleation sites

- Low wall superheat: Sample with granules performs better
- Pore morphology probably plays a role as well

Steady-state partially flooded evaporation with capillary structures Approach

- Partially-flooded capillary structures (e.g. finned tubes / micro-/macro-structured tubes)
 - > Formation of thin refrigerant films / 3-phase contact lines
 - > High heat transfer, efficient evaporation from menisci
 - Refrigerant transport without auxiliary energy demand
- Drawback: strong sensitivity to refrigerant filling level
 - Precise adjustment of tubes / filling level required

Steady-state partially flooded evaporation with capillary structures Example: SorCool-Projekt (FKZ 0327423B)

Steady-state evaporation on partially-flooded structured tubes

- Impact of different internal & external structures (fins, micro pins, etc.)
- Impact of refrigerant filling level
- Assessment of heat transfer coefficients in dependence of process parameters → derivation of design guidelines / correlations

[3]

Cyclic capillary-assisted evaporation

Approach

- Formation of thin refrigerant films (microzones) on/in capillary structures
 - High evaporation heat transfer achievable
- Cyclic condensation and evaporation on one heat exchanger
 - Refrigerant supply by condensation \rightarrow no auxiliary energy required
- Cyclic operation entails:
 - Dynamic evaporation process
 - One-chamber sorption module \rightarrow compact design
 - Thermal masses must be minimized to avoid losses
 - Limited refrigerant turnover per half-cycle

12 © Fraunhofer ISE FHG-SK: ISE-INTERNAL

Cyclic capillary-assisted evaporation Example: Project "HArVest"

Cyclic non-stationary evaporation measurements on different evaporator designs

- Innovative evaporator designs with porous structures
- Development of manufacturing technology
- Measurement and assessment of evaporation performance and dynamics

Cyclic capillary-assisted evaporation Example: Project "ADOSO" (FKZ 03ET1127 B)

Analysis of geometry impacts on dynamic thin film evaporation

- Samples: Cu tube-fin heat exchangers
- Variation of fin spacing, fin thickness, tube diameter
- Refrigerant storage on fin surfaces and in interstices
- Analysis of (de-)wetting and evaporation dynamics

[8] R. Volmer, et al., Evaporator development for adsorption heat transformation devices – Influencing factors on non-stationary evaporation with tube-fin heat exchangers at sub-atmospheric pressure, Renewable Energy (2016), <u>http://dx.doi.org/10.1016/j.renene.2016.08.030</u>

Cyclic capillary-assisted evaporation Example: Project "ADOSO" (FKZ 03ET1127 B)

Dynamic capillary-assisted evaporation from porous Cu fiber structures

- Samples: sintered Cu fiber structures, soldered on carrier
- Variation of structure height: 2.2 mm vs. 5.0 mm
- Heat transfer coefficient U_{evap} rises with reducing refrigerant charge
- Higher structure achieves higher U_{evap} and refrigerant storage capacity

Cyclic capillary-assisted evaporation

Example: Dissertation Rahel Volmer

Characterization of dynamic evaporation from copper wire mesh structures

- Samples: parallel Cu wire mesh strips, soldered on carrier
- Analysis of ...
 - geometry impacts: variation of pore size, porosity, structure height, wire orientation
 - process impacts: system pressure, applied heat flux
 - impact of surface properties
 - interaction of wetting dynamics and evaporation dynamics
- Comparison with modeling results, deduction of design guidelines

Operational Modes State of the Art - conclusion

different technical concepts available, but modified heat exchangers are necessary

by knowing the relevant effects ... make it simple again ...

What's next: evaporation below 0°C research network of "SubSie" projects

- Evaporation usually limited to $> 0^{\circ}$ C due to risk of freezing
- Perspectives for evaporation below 0°C for aBsorption / aDsorption heat pumps / chillers:
 - heat pumps: \rightarrow utilization of ambient air as low T heat source
 - chillers: \rightarrow significant extension of the scope of application
- Challenge: development of evaporator & module concepts which...
 - tolerate temperatures below 0°C $(\rightarrow \text{ freezing / lower freezing point / ...})$
 - supply sufficient evaporation power

18

What's next: evaporation below 0°C research network of "SubSie" projects

- consortium of 12 academic and industrial partners, working with water as refrigerant
- Five technology projects, addressing different technical solutions to make the use of water around the freezing point feasible
- Technology projects are linked with a science and market project (Fraunhofer ISE/ TU Berlin) in order to ensure scientific quality and coordination the market activities
- Three projects started in 2019, the open three will start latest until 05/20
- Total project volume: 7,5 Mio. €/ 5,5 Mio. € funding

Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Lena Schnabel

www.ise.fraunhofer.de lena.schnabel@ise.fraunhofer.de

20 © Fraunhofer ISE FHG-SK: ISE-INTERNAL

Experimental Setups

Setup for evaporation on structure samples

- Analysis of evaporation characteristics of small structure samples (Ø 40 mm)
- **Operational modes:**
 - Steady-state pool boiling
 - Dynamic pool boiling (flooded / partially flooded)
 - Dynamic capillary-assisted evaporation
- **Evaluation quantities:**
 - Steady-state: boiling curve $\dot{q} = f(\Delta T)$
- - Dynamic: heat transfer coeff.

$$U(t) = \frac{\dot{q}(t)}{T_{sample}(t) - T_{sat}(p, t)}$$

Experimental Setups

Setup for evaporation on heat exchangers

- Measurement of evaporation characteristics of heat exchangers
- Evaporation and condensation, steady-state and dynamic
- Various heat exchanger designs installable
- Operational modes:
 - (partially) flooded
 - falling film
 - cyclic capillary assisted / thin film
- Evaluation quantity:
 - "heat transfer capability" UA
 → independent of driving force

23 © Fraunhofer ISE

FHG-SK: ISE-INTERNAL

Modeling

 α_{Kont}

 λ_{Rohr}

 α_{Fluid}

[8] R. Volmer, et al., Evaporator development for adsorption heat transformation devices – Influencing factors on non-stationary evaporation with tube-fin heat exchangers at sub-atmospheric pressure, Renewable Energy (2016), http://dx.doi.org/10.1016/i.renene.2016.08.030

 $R_{\lambda,tb,str}$

R_{fl,ba} R_{fl.str} Fluid $T_{fluid} \oint \dot{Q}_{evap}$ [8]

 $R_{\lambda,tb,bd}$

- Evaporation dynamics are reproduced qualitatively correct
- Quantitative model accuracy is improvable

Rohrwand

Resistance analysis allows identification of limiting factors

heat exchanger geometry (e.g. fin spacing, fin thickness), Input parameters: fluid temperature, system pressure, driving T difference Tsat Lamelle α_{KM} $R_{rf,frtb}(t) \ge$ $R_{rf,bd}(t) \leq$ $R_{rf,coll}(t)$ Kältemittel

Thermal resistance network model (node model)

Model for dynamic evaporation from tube-fin heat exchangers

Re = 3400 (m8)Re = 3400 (model)

Modeling

Model for dynamic evaporation from porous structures

- Thermal RC network model (node model)
- Implementation in "R"
- Description of structure morphology by effective quantities (pore diameter, porosity, ...)
- Different model approaches for (de-)wetting dynamics
 - Downward evaporation front →
 - Evaporation front
 + evap. from distributed refrigerant

. . .

Work in progress...