
 Knowledge of finger geometry crucial for print quality inspection
 High-resolution finger profile obtained via offline microscopic measurements

− But: additional time and effort
 AOI tools provide low-resolution images of

solar cells Affects quality inspection
− Critical for very thin printed structures

 Derive microscopic-like finger geometry
directly from inline optical images
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Motivation Results

Superresolution model

DeepFineUp model

Conclusion
—
 Tool to generate quality maps from inline optical images without the 

need of offline microscopic measurements

 Superresolution model generates respective high-resolution images

 DeepFineUp model successfully predicts geometrical parameters from 
generated high-resolution images

 Quality maps revealing the geometrical finger profile are generated

 Applicable on different metallization layouts, different printing methods

Superresolution model. Given inline input images, our model predicts high-resolution images. 
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Q-maps: Reduced to statistically relevant quality parameters

Correlation for each finger parameter
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Correlation between predicted and microscopic mean parameter for each finger image patch

 CNN learns to predict the microscopic-like high-resolution images
− Used for geometrical parameter prediction

 Input: Cropped inline optical images
− Red-illuminated image
− Laser projected shadow image
− Shadow contour image obtained by shadow segmentation ‘SS’ model

 Optimization by pixel-wise error minimization via microscopic reference data

link to Fraunhofer ISE contributions of the 40th EU PVSEC

https://ise.link/eupvsec2023

(available as of 20.09.2023)
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DeepFineUp model. Given the high-resolution images, the model predicts the finger parameters.

 Image processing-based analysis tools[1] estimates the finger geometry from
high-resolution images

 But: time expensive at whole cell level
 We implement a CNN[2] to predict the geometrical parameters

− Input: high-resolution images containing 2D and 3D information
− Target parameters obtained by applying FineUp on the images
− Optimized via supervised learning using paired data
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Quality map of rotatory screen-printed sample with a screen opening of 40 µm
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Quality map of a flatbed screen-printed sample with screen openings of varying widths[3]

Approach
1. Superresolution model to predict high-

resolution images from inline images
2. DeepFineUp model to predict the geometrical

statistics from the generated high-resolution 
images

3. User-friendly geometrical quality maps Finger geometry estimation
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